A CORRECTION AND SOME ADDITIONS TO "REPARAMETRIZATION OF *n*-FLOWS OF ZERO ENTROPY"

RY

J. FELDMAN AND D. NADLER

ABSTRACT. In addition to correcting an error in the previously mentioned paper, we show that if $v \mapsto \varphi_w$ and $w \mapsto \psi_\sigma$ on X and Y are n- and m-flows, respectively, then the (n+m)-flow $(v,w) \mapsto \varphi_v \times \psi_w$ on $X \times Y$ is "loosely Kronecker" if and only if φ and ψ are.

There is a silly and easily correctable mistake in our paper [4]. Recall that an n-flow is a free, ergodic, probability-preserving action of \mathbb{R}^n . We constructed in [4] an action φ of \mathbb{R}^n as follows: $t \mapsto T_t$ was defined as a suspension over the non-LB, ergodic, zero-entropy transformation of [2]. Then, for an (n-1)-vector u, $\varphi_{(t,v)}$ was defined as T_t . φ is indeed ergodic and probability-preserving, but it is not free, so of course it is not an n-flow.

The purpose of the construction was to produce a zero-entropy n-flow which is not LK in the sense of [4]. First, we would like to change terminology, and use the term "standard" (as in Katok [5]) rather than "LK". The object, then, is to construct a nonstandard n-flow of zero entropy. One way would be to fix up the prior example as follows: let the above flow T act on (Y, ν) , and let θ be any (n-1)-flow on a space (Z, ρ) . Then $\varphi_{(\iota,u)} = T_{\iota} \times \theta_{u}$ will be a nonstandard n-flow of zero entropy. That it is nonstandard may be seen as in the argument given at the end of [4] and it is easy to see that it has zero entropy. However, we now give a sketch of a more enlightening approach to the matter.

First, we point out

LEMMA 1. A standard n-flow has entropy zero.

The easiest way to see this is to use the ideas of r-entropy, from [3]: to say φ is standard is to say that for large N, most C_N names for (φ, \mathfrak{P}) are f_N -close. The Lebesgue continuity theorem then may be used to get an exponentially small bound on the number of sets of d_N diameter r which are required to cover most of the space on which φ acts. \square

Hereafter, let ψ be an *l*-flow on (Y, ν) and θ an *m*-flow on (Z, ρ) . If $\varphi_{(t,u)} = \psi_t \times \theta_u$, then φ is an (l + m)-flow on $(Y \times Z, \nu \times \rho)$.

LEMMA 2. φ as above necessarily has entropy zero.

INDICATION OF PROOF. By using partitions of the form $\Re \times \Im$ where $h(\psi, \Re)$ and $h(\theta, \Im)$ are finite, we may reduce to the case where ψ and θ have finite

Received by the editors February 11, 1980. 1980 Mathematics Subject Classification. Primary 28D10, 28D15. entropy. But now the result follows directly from the definition of entropy, essentially because $(l+m)N/N^{l+m} \to 0$ as $N \to \infty$. See [1] for discussions of this type in the discrete case.

LEMMA 3. φ as above is standard if and only if both ψ and θ are.

PROOF. If both ψ and θ are standard, then for any partition of the form $\Re \times \Im$, the process $(\psi \times \theta, \Re \times \Im)$ may be seen to be standard by doing f-matching for (ψ, \Re) and (θ, \Im) separately, and then combining.

To go in the other direction, one may use a similar argument to that at the end of [4] to make a reduction of dimension. Here are the details.

Suppose φ is standard. Choose a partition \Re of Y. Then $\Re = \{P \times Z : P \in \Re\}$ is a partition of $Y \times Z$. So, referring to the definitions in §3 of [4], we see that for any $\varepsilon > 0$ there is some M > 0 such that if M < N there is a set $E_N \subset Y \times Z$ with $\nu \times \rho(E_N) > 1 - \varepsilon$ and $f_N^{\Re}(x, x') < \varepsilon$ whenever $x, x' \in E_N$. There is thus some $z \in Z$ so that if we set $F_N = \{y : (y, z) \in E_N\}$ then $\nu(F_N) > 1 - \varepsilon$. Now, if $t \in R^I$ and $u \in R^m$, then $\Re(y, z)(t, u) = \Re(y)(t)$, independent of z. So $f_N^{\Re}((y, t), (y', t')) < \varepsilon$ provided $y, y' \in F_N$. So for any such y, y', and any z, z', there is some $h \in \Re_{C_1^{l+m}}$ such that

$$\frac{1}{|C_n^{l+m}|}\int_{C_n^{l+m}}\delta(\Re(y,z)(h(t,u)),\,\Re(y',z')(t,u))\,dt\,du<\varepsilon.$$

(Since there are different dimensions to worry about, we now denote the N-cube in R^p by C_N^p .) Rewriting, and writing h(t, u) as (j(t, u), k(t, u)), where $j: R^{l+m} \to R^l$ and $k: R^{l+m} \to R^m$, we have

$$\frac{1}{|C_N'|}\frac{1}{|C_N''|}\int_{C_N'} \delta(\mathfrak{P}(y)(j(t,u)),\,\mathfrak{R}(y')(t))\,dt\,du<\varepsilon;$$

so for some u_0 we have

$$\frac{1}{|C_N^l|}\int_{C_N^l}\delta(\mathfrak{P}(y)(j(t,u_0)),\,\mathfrak{R}(y')(t))\,dt<\varepsilon.$$

Set $i(t) = j(t, u_0)$. i is a differentiable function from C_N^l to C_N^l leaving fixed a neighborhood of the boundary. Furthermore $||i' - I_{R^l}||_{\infty} \le ||h' - I_{R^{l+m}}||_{\infty} < \varepsilon$. Finally, assuming $\varepsilon < 1$, we have $||i'(y) - I_{R^l}|| < 1$ for each y, so i is locally invertible (by the Inverse Function Theorem), so-since C_N^l is simply connected—i is globally invertible, i.e. $i \in \mathfrak{D}_{C_N^l}$. Thus $f_N^{\mathfrak{S}}(y, y') < 2\varepsilon$ for all $y, y' \in F_N$. But ε was arbitrary, so we are done. \square

It is now easy to produce, for $n \ge 2$, examples of nonstandard *n*-flows of zero entropy: just take ψ to be a 1-flow of positive entropy, and θ any (n-1)-flow whatsoever. Then by Lemma 2, φ will have zero entropy. It cannot be standard, because if it were, then by Lemma 3, ψ would also be standard, and therefore by Lemma 1 would have to have entropy zero.

Alternatively, one could, as in [4], take ψ to be some nonstandard 1-flow of zero entropy. Such examples are provided by proving the following fact:

LEMMA 4. A flow is standard in the present sense if and only if it is LB in the sense of [2] and of zero entropy, or, equivalently, standard in the sense of [5].

The proof is a fairly routine application of the definitions. This construction is in principle more difficult, in that it already needs the existence of non-LB flows in one dimension. However, it may be useful in constructing uncountably many different equivalence classes.

The first construction, setting $\varphi_{(t,u)} = \psi_t \times \theta_u$ with ψ of positive entropy, raises the interesting possibility of exhibiting some "natural" equivalence classes other than the standard class, among the entropy zero n-flows, $n \ge 2$.

REFERENCES

- 1. J. P. Conze, Entropie d'un groupe abelien de transformations, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 25 (1972), 11-30.
 - 2. J. Feldman, New K-automorphisms and a problem of Kakutani, Israel J. Math. 24 (1976), 16-37.
- 3. _____, n-entropy, equipartition, and Ornstein's isomorphism theorem in \mathbb{R}^n , preprint, Univ. California, Berkeley; Israel J. Math. (to appear).
- 4. J. Feldman and D. Nadler, Reparametrization of n-flows of zero entropy, Trans. Amer. Math. Soc. 256 (1979), 289-304.
- 5. A. Katok, Time change, monotone equivalence, and standard dynamical systems, Dokl. Akad. Nauk SSSR 273 (1975), 789-792. (Russian)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024